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The aim of the article is to develop a theoretical conception for transforming organizational resilience through AI-mediated business diagnostics. Traditional 
theories of dynamic capabilities, adaptive capacity, and organizational learning do not explain organizations where algorithms make critical decisions, ma-
chines learn from experience, and artificial agents interact with humans. The article presents a systematic review of over 120 articles from leading journals 
(2015–2025), a conceptual analysis for the development of theoretical constructs, and a synthesis of dynamic capabilities theory, organizational learning, 
and computer science to create an integrative conception. The conclusion introduces «algorithmic reflexivity» – the organization’s ability to understand itself 
through computational processes that simultaneously shape organizational reality. Three paradoxes of AI-enhanced resilience have been identified: trans-
parency through opacity (clarity through algorithmic inscrutability); autonomy through dependence (independence through technological reliance); stability 
through fluidity (changes generate meta-stability). A hybrid human-machine intelligence model with emergent properties has been developed. In addition,  
13 empirically verified propositions related to organizational adaptation, transformation of managerial agency, and algorithmic competition have been formu-
lated. Boundary conditions include digital infrastructure, cultural acceptability of algorithms, and scale thresholds. Empirical operationalization and new meth-
odologies (computational ethnography, algorithmic audit) are needed. The practical significance of this article lies in the recommendation that organizations 
should develop algorithmic governance instead of direct control, invest in skills to create meaning for interpreting AI analytics, and design systems that enable 
human-machine interaction. Leaders evolve from decision-makers to creators and facilitators of collaborative work. The originality of this work is that organiza-
tional resilience is conceptualized, for the first time, as an emergent property of human-machine interaction rather than as a human capability. A new ontology 
of organizational knowledge is proposed, transcending the human-machine divide and theorizing hybrid intelligence as a result of integration. The paradoxical 
logic of AI-enhanced resilience challenges linear adaptation models and calls for a rethinking of management theory for the era of hybrid organizations.
Keywords: artificial intelligence, organizational resilience, business diagnostics, algorithmic reflexivity, strategic management, organizational development, 
digital transformation, managerial innovations.
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Зварич О. І., Кафка С. М. Інтелектуальна бізнес-діагностика на основі штучного інтелекту для прогнозної оцінки  
організаційної стійкості в цифровій трансформації

Завдання статті – розробити теоретичну концепцію трансформації організаційної стійкості через ШІ-опосередковану бізнес-діагностику. Тради-
ційні теорії динамічних здібностей, адаптивної спроможності та організаційного навчання не пояснюють організації, де алгоритми приймають 
критичні рішення, машини навчаються з досвіду, а штучні агенти взаємодіють з людьми. Стаття являє собою систематичний огляд 120+ ста-
тей провідних журналів (2015–2025), концептуальний аналіз для розробки теоретичних конструкцій, синтез теорії динамічних здібностей, орга-
нізаційного навчання, комп’ютерних наук для створення інтегративної концепції. У висновках введено «алгоритмічну рефлективність» – здат-
ність організації пізнавати себе через обчислювальні процеси, що одночасно формують організаційну реальність. Ідентифіковано три парадокси 
ШІ-посиленої стійкості: прозорість через непрозорість (ясність через алгоритмічну незрозумілість); автономія через залежність (незалежність 
через технологічну залежність); стабільність через плинність (зміни створюють мета-стабільність). Розроблено модель гібридного людино-
машинного інтелекту з емерджентними властивостями. Також розроблено 13 емпірично верифікованих тверджень, що стосуються організа-
ційної адаптації, трансформації управлінської суб’єктності та алгоритмічної конкуренції. Граничні умови: цифрова інфраструктура, культурна 
прийнятність алгоритмів, пороги масштабу. Потрібна емпірична операціоналізація, нові методології (обчислювальна етнографія, алгоритміч-
ний аудит). Практичне значення статті полягає в тому, що організаціям рекомендовано розвивати алгоритмічне врядування замість прямого 
контролю, інвестувати в навички створення смислів для тлумачення ШІ-аналітики, проєктувати системи для виникнення людино-машинної 
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взаємодії. Керівники еволюціонують від тих, хто приймає рішення, до їх творців та організаторів спільної роботи. Оригінальність даної роботи 
полягає в тому, що вперше було концептуалізовано організаційну стійкість як емерджентну властивість людино-машинної взаємодії, а не люд-
ську здатність. Запропоновано нову онтологію організаційного знання, що виходить за поділ людина-машина, теоретизуючи гібридний інтелект 
як результат інтеграції. Парадоксальна логіка ШІ-посиленої стійкості кидає виклик лінійним моделям адаптації, вимагає переосмислення теорії 
менеджменту для епохи гібридних організацій.
Ключові слова: штучний інтелект, організаційна стійкість, бізнес-діагностика, алгоритмічна рефлексивність, стратегічний менеджмент, ор-
ганізаційний розвиток, цифрова трансформація, управлінські інновації.
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The proliferation of artificial intelligence (AI) in 
organizational contexts represents more than 
technological advancement – it constitutes a 

fundamental challenge to the theoretical understand-
ing of how organizations function, adapt, and survive 
[1; 2]. Traditional conceptualizations of organizational 
resilience, rooted in assumptions of human cognition 
and decision-making, prove increasingly inadequate 
for comprehending organizations where algorithms 
make critical decisions, machines learn from experi-
ence, and artificial agents interact with human actors 
in complex, emergent ways [3; 4].

This theoretical inadequacy manifests most 
acutely in business diagnostics – the processes 
through which organizations assess their health, iden-
tify threats, and maintain viability. While scholars 
have extensively theorized organizational resilience as 
the capacity to withstand and recover from adversity 
[5; 6], existing frameworks assume predominantly hu-
man-centered diagnostic processes. The integration of 
AI fundamentally disrupts these assumptions, creating 
"intelligent business diagnostics" – a paradigmatically 
different approach to organizational self-understand-
ing that demands new theoretical foundations.

THE ANALYSIS OF RECENT RESEARCH 
AND PUBLICATIONS
Organizational resilience has been conceptual-

ized through multiple theoretical lenses: as dynamic 
capability [7; 8], as adaptive capacity [9; 10], as orga-
nizational slack [11], and as mindful organizing [12]. 
These perspectives share fundamental assumptions 
about human agency, cognitive limitations, and orga-
nizational knowledge that become problematic when 
AI enters the equation.

Recent research on AI in organizations has ex-
plored augmentation of human decision-making [13], 
automation-augmentation paradoxes [3], and coordi-
nating human-machine learning [4]. However, these 
studies treat AI primarily as a tool rather than exam-
ining how it fundamentally transforms organizational 
nature. Studies on digital transformation [14; 15] ac-
knowledge technological disruption but lack theoreti-
cal frameworks for understanding the AI-mediated 
organizational cognition.

Critical gaps exist in understanding how AI cre-
ates new forms of organizational self-awareness, how 
organizations navigate paradoxes inherent in algorith-
mic systems, and what hybrid human-machine intel-
ligence means for management theory.

THE UNSOLVED ASPECTS OF THE PROBLEM
Existing research fails to address the following 

three critical questions:
First, how does AI transform organizational re-

silience from a capability organizations possess to an 
emergent property arising from continuous human-
machine interaction? Current frameworks assume hu-
man-centered processes, unable to capture recursive 
cycles where AI systems simultaneously diagnose and 
constitute organizational reality.

Second, what theoretical constructs can cap-
ture the paradoxical nature of the AI-enhanced resil-
ience, where organizations gain transparency through 
opacity, autonomy through dependence, and stability 
through perpetual change? Traditional theories as-
sume linear relationships that cannot encompass these 
contradictions.

Third, how should management theory concep-
tualize hybrid human-machine intelligence that tran-
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scends traditional epistemological boundaries? When 
organizations can know without human understand-
ing, theories premised on shared mental models and 
collective sense-making prove inadequate.

THE AIM OF THE ARTICLE
This study develops a comprehensive theoretical 

framework for understanding how AI fundamentally 
transforms organizational resilience through intelli-
gent business diagnostics. We aim to:

1.	 Introduce "algorithmic reflexivity" as a new 
theoretical construct capturing the AI-mediated orga-
nizational self-awareness.

2.	 Identify and theorize fundamental paradoxes 
inherent in the AI-enhanced resilience.

3.	 Propose a new ontology of organizational 
knowledge transcending the human-machine divide.

4.	 Develop testable propositions for empirical 
investigation.

THE RESEARCH METHODOLOGY
This theoretical study employs systematic lit-

erature review and conceptual analysis to develop 
new theoretical constructs. We reviewed 120+ peer-
reviewed articles from leading management journals 
(Academy of Management Review, Organization Sci-
ence, Strategic Management Journal) published 2015-
2025, focusing on AI, organizational resilience, and 
business diagnostics.

Our methodology follows theory-building prin-
ciples [16], progressing from identifying theoretical 
gaps, through conceptual development, to proposition 
formulation. We synthesize insights from multiple 
theoretical traditions – dynamic capabilities, organi-
zational learning, complexity theory – to construct an 
integrative framework. The framework generates 13 
testable propositions suitable for empirical investiga-
tion through various methodologies.

THE MAIN RESEARCH RESULTS
The Algorithmic Reflexivity as Emergent Orga-

nizational Property
We propose "algorithmic reflexivity" as a con-

struct capturing novel organizational self-awareness 
emerging from AI integration. Unlike traditional orga-
nizational learning that assumes human actors reflect-
ing on experience [17], algorithmic reflexivity involves 
organizations understanding themselves through 
computational processes that simultaneously consti-
tute and reveal organizational reality.

This operates through three mechanisms. Com-
putational mirroring occurs when AI creates digital 
representations of organizational processes that be-
come more "real" than the processes themselves – the 

map becomes the territory [18]. Recursive learning 
loops emerge when AI systems learn from organiza-
tional data, modify behavior based on that learning, 
generate new data from modified behavior, and contin-
ue iterating – creating spirals of self-reinforcing change. 
Emergent intentionality arises when interaction be-
tween human goals and algorithmic optimization pro-
duces organizational behaviors intended by neither hu-
man nor machine but emerging from their coupling.

Proposition 1: Organizations exhibiting high al-
gorithmic reflexivity will demonstrate qualitatively dif-
ferent adaptation patterns than traditionally resilient 
organizations, characterized by discontinuous rather 
than incremental change, preemptive rather than re-
active responses, and emergent rather than designed 
strategies.

Proposition 2: Algorithmic reflexivity increases 
with AI system opacity, suggesting a paradoxical rela-
tionship where organizations understand themselves 
better through processes they understand less.

The Paradoxical Nature of the AI-Enhanced 
Resilience

The AI-enhanced resilience operates through 
three fundamental paradoxes challenging convention-
al management theory.

The Transparency-Opacity Paradox. AI sys-
tems promise unprecedented organizational trans-
parency through comprehensive data analysis and 
pattern recognition [19]. Paradoxically, this transpar-
ency emerges through increasingly opaque mecha-
nisms – deep neural networks whose decision logic 
remains inscrutable [20; 21]. Organizations achieve 
clarity through obscurity, understanding through in-
comprehension. This manifests as epistemological 
opacity (knowing more while understanding less how 
they know), operational transparency (AI makes pro-
cesses visible while rendering visualization invisible), 
and strategic clarity (AI illuminates options through 
opaque analytical processes).

Proposition 3: Organizational autonomy in the 
AI-integrated contexts follows an inverted U-shaped 
relationship with AI sophistication, initially increas-
ing through augmentation before decreasing through 
substitution.

The Autonomy-Dependence Paradox. AI 
promises enhanced autonomy through superior deci-
sion-making and strategic flexibility [22; 23]. Yet this 
autonomy requires increasing dependence on techno-
logical systems, their designers, and supporting infra-
structures. Organizations become more independent 
through greater dependence. Decisional autonomy 
increases while creating dependence on algorithmic 
decision-making. Strategic flexibility expands while 
constraining choices to computationally tractable al-
ternatives.
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Proposition 4: The autonomy-dependence para-
dox intensifies with environmental uncertainty, as or-
ganizations require more AI support precisely when 
dependence becomes most risky.

The Stability-Fluidity Paradox. Traditional re-
silience theory posits stability and changes as oppos-
ing forces requiring balance [24]. The AI-enhanced 
resilience transcends this dichotomy through continu-
ous adaptation creating meta-stability – stability at 
higher logical levels through constant change at op-
erational levels. Organizations achieve resilience not 
by resisting change but by changing so continuously 
that change becomes their stable state.

Proposition 5: The AI-enhanced organizations 
exhibit "dynamic equilibrium" where resilience emerg-
es from perpetual disequilibrium at operational levels, 
challenging punctuated equilibrium models of organi-
zational change.

The Hybrid Human-Machine Intelligence
AI fundamentally transforms organizational 

cognition by creating hybrid systems where human 
and artificial intelligence integrate in ways transcend-
ing simple aggregation [25; 26]. Machine learning al-
gorithms identify patterns invisible to human cogni-
tion. Where humans excel at causal reasoning, con-
textual understanding, and creative problem-solving, 
machines excel at correlation detection, pattern rec-
ognition, and optimization within defined parameters. 
Integration creates cognitive capabilities possessed by 
neither component alone – emergent intelligence aris-
ing from intersection of human meaning-making and 
machine pattern-recognition.

Proposition 6: Hybrid organizational cognition 
exhibits emergent properties including ability to si-
multaneously process symbolic and sub-symbolic in-
formation, integrate intuitive and analytical reasoning, 
and operate across multiple temporal scales.

Deep learning systems create artificial orga-
nizational nervous systems – distributed networks 
processing environmental stimuli and coordinat-
ing responses below conscious managerial attention 
threshold [27; 28]. These enable pre-attentive process-
ing (responding to changes before human awareness), 
distributed sensing (perceiving through multiple mo-
dalities simultaneously), and automated coordination 
(organized responses without centralized control).

Proposition 7: The organizations with devel-
oped artificial nervous systems will exhibit faster re-
sponse times to environmental changes but may also 
demonstrate emergent behaviors unintended by their 
human designers.

The Multi-Criteria Models of Algorithmic Re-
silience

AI enables multi-criteria optimization across 
thousands of variables simultaneously, creating resil-

ience through balance among factors too numerous 
for human comprehension [29; 30]. This transforms 
resilience from achieving specific targets to maintain-
ing dynamic equilibrium across countless dimensions. 
The multi-criteria AI models integrate financial indi-
cators, operational metrics, market signals, social me-
dia sentiment, supply chain data into synthetic assess-
ments of organizational health.

Proposition 8: The AI-enabled multi-criteria 
optimization will reveal previously unknown inter-
dependencies among organizational variables, sug-
gesting resilience emerges from managing complexity 
rather than reducing it.

AI enables "predictive resilience" – capacity to 
adapt to futures that have not yet materialized [31]. 
Through simulation, scenario generation, and pre-
dictive modeling, organization’s stress-test strategies 
against thousands of potential futures, developing re-
silience to events before they occur. This transcends 
traditional scenario planning through combinatorial 
explosion (exploring vastly larger possibility spaces), 
non-linear projection (modeling discontinuous chang-
es), and adaptive forecasting (continuously updating 
predictions).

Proposition 9: Predictive resilience through 
AI will shift organizational focus from responding to 
disruptions to preventing their materialization, funda-
mentally altering temporal structure of strategic man-
agement.

The Implications for Management Theory and 
Practice

AI integration fundamentally challenges the 
theories of managerial agency and control [32; 33]. 
When algorithms make decisions faster than humans 
can comprehend, optimize across dimensions humans 
cannot perceive, and learn from patterns humans can-
not detect, agency transforms rather than disappears, 
shifting from direct control to meta-control – manag-
ing systems that manage the organization.

This manifests in three new forms of manage-
rial work: algorithmic governance (setting parameters, 
constraints, objectives for AI systems rather than 
making direct decisions), ethical oversight (ensuring 
AI systems operate within moral and legal boundar-
ies), and meaning making (interpreting AI outputs for 
stakeholders demanding human explanation).

Proposition 10: Managerial roles in the AI-inte-
grated organizations will evolve from decision-makers 
to decision-framers, from information processors to 
meaning-makers, and from controllers to facilitators 
of human-machine collaboration.

When organizations comprise both human and 
machine learners with fundamentally different learn-
ing mechanisms, new frameworks are needed. We 
identify three modes: parallel learning (humans and 
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machines learn independently from same experienc-
es), sequential learning (humans learn from machine 
outputs or machines learn from human-labeled data), 
and integrated learning (human and machine learning 
processes become intertwined).

Proposition 11: Hybrid organizational learn-
ing exhibits faster knowledge accumulation but also 
greater risk of systematic bias, as machine learning can 
amplify human prejudices while hiding them under al-
gorithmic objectivity.

Competition increasingly occurs between algo-
rithmic systems rather than human strategists [34; 35]. 
Algorithmic competition exhibits hyperspeed dynam-
ics (compressing competitive cycles from months to 
milliseconds), emergent collusion (competing algo-
rithms independently discovering cooperative strate-
gies), and algorithmic arms races (escalating sophisti-
cation creating winner-take-all dynamics).

Proposition 12: Markets dominated by algorith-
mic competition will exhibit increased volatility, faster 
convergence to efficiency, and greater susceptibility to 
systemic cascades than human-mediated markets.

Boundary Conditions
Our framework presupposes organizational con-

texts with robust digital infrastructures, computation-
al resources, and data availability. These conditions 
exclude many organizations in developing economies, 
smaller enterprises, and sectors with limited digitali-
zation. The digital divide creates theoretical bifurca-
tion: organizations with AI capabilities may operate 
according to fundamentally different principles than 
those without.

Digital Infrastructure Dependencies. The ap-
plicability of our framework depends critically on tech-
nological maturity. Organizations require not merely 
access to AI technologies but sophisticated data infra-
structures, computational capacity, and technical ex-
pertise to implement intelligent business diagnostics 
[36; 37]. This creates a threshold effect where benefits 
of the AI-enhanced resilience become accessible only 
above certain levels of digital capability. Small and me-
dium enterprises, particularly in emerging markets, 
may face structural barriers preventing adoption of 
advanced AI systems [38]. The resulting digital strati-
fication suggests our theoretical framework applies 
primarily to technologically advanced organizational 
contexts, raising questions about generalizability 
across diverse economic settings.

Institutional and Regulatory Constraints. Al-
gorithmic decision-making faces varying acceptance 
across cultural contexts [39; 40]. Societies with strong 
preferences for human judgment, regulatory restric-
tions on automated decision-making, or cultural re-
sistance to technological determinism may limit AI 
integration. European Union regulations on algorith-

mic transparency and explainability, for instance, con-
strain deployment of opaque AI systems, potentially 
limiting algorithmic reflexivity [41; 42]. Conversely, 
regulatory environments permitting extensive AI de-
ployment may accelerate organizational transforma-
tion but raise ethical concerns about accountability 
and human agency. These institutional variations sug-
gest our framework’s predictions may manifest differ-
ently across regulatory regimes, necessitating context-
specific theoretical refinements.

Organizational Scale and Complexity Thres
holds. Our framework exhibits non-linear applicability 
across organizational scales. Very small organizations 
may lack resources for meaningful AI implementation, 
while extremely large, complex organizations may face 
coordination challenges that overwhelm even sophis-
ticated AI systems [43]. Optimal applicability likely oc-
curs within a bounded range of organizational size and 
complexity. Below minimum thresholds, costs of AI 
integration exceed benefits; above maximum thresh-
olds, organizational complexity introduces coordina-
tion problems resistant to algorithmic solutions. This 
suggests our theoretical constructs apply most power-
fully to mid-to-large organizations with sufficient re-
sources and manageable complexity.

Proposition 13: The relationship between AI 
integration and organizational resilience is moderated 
by institutional factors including regulatory frame-
works, cultural values regarding human agency, and 
societal trust in technology.

CONCLUSIONS AND FUTURE RESEARCH 
DIRECTIONS
The integration of AI into organizational diag-

nostics represents fundamental transformation in or-
ganizational nature itself. Our theoretical framework 
demonstrates how AI creates new forms of organiza-
tional resilience transcending traditional conceptu-
alizations, operating through algorithmic reflexivity, 
navigating fundamental paradoxes, and generating 
hybrid intelligence that is neither human nor artificial 
but emergently both.

Theoretical contributions. We introduce algo-
rithmic reflexivity as a construct capturing recursive 
organizational self-awareness emerging from AI in-
tegration. We identify three fundamental paradoxes 
(transparency-opacity, autonomy-dependence, stabil-
ity-fluidity) revealing deep tensions in organizational 
control and agency. We propose a new ontology of 
organizational knowledge transcending the human-
machine divide, theorizing hybrid intelligence as 
emergent from interaction rather than residing in ei-
ther component.

Practical implications. Organizations should 
develop algorithmic governance capabilities rather 
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than maintaining direct control over AI systems. 
Managers must invest in meaning-making and trans-
lation skills to bridge human and machine intelligence. 
Organizations should design for emergence by creat-
ing conditions for beneficial human-machine interac-
tion rather than specifying all outcomes. Human over-
sight of ethical and strategic decisions that cannot be 
delegated to machines remains essential.

Research agenda. Our framework generates 13 
testable propositions requiring empirical investigation. 
Future research should operationalize and measure al-
gorithmic reflexivity, identify boundary conditions de-
termining when AI enhances versus diminishes orga-
nizational resilience, explore how paradoxes manifest 
in practice, track performance implications of hybrid 
human-machine intelligence, and examine how cultur-
al context moderates AI’s impact on resilience.

The Empirical Operationalization Challenges. 
Translating our theoretical constructs into measurable 
variables presents significant methodological challeng-
es [44]. Algorithmic reflexivity, as an emergent prop-
erty of human-machine interaction, resists reduction 
to simple metrics. Researchers must develop multi-
dimensional measurement approaches capturing com-
putational mirroring intensity, recursive learning loop 
frequency, and emergent intentionality manifestations. 
Longitudinal research designs tracking organizations 
through AI integration phases could reveal temporal 
dynamics of reflexivity development [45]. Comparative 
case studies across industries and institutional contexts 
would illuminate boundary conditions and contingen-
cy factors. Survey instruments measuring managerial 
perceptions of algorithmic influence on organizational 
self-understanding could provide quantitative data, 
though such self-reports may inadequately capture un-
conscious aspects of reflexivity.

The Paradox Resolution and Organizational 
Strategies. While our framework identifies fundamen-
tal paradoxes in the AI-enhanced resilience, future re-
search must investigate how organizations navigate 
these tensions in practice [46]. Do successful organi-
zations develop paradox management capabilities, or 
do they privilege one pole over another? Ethnographic 
studies could reveal the micro-level practices through 
which managers balance transparency demands with the 
algorithmic opacity realities. Action research interven-
tions testing different approaches to paradox navigation 
could generate practical insights while advancing theory. 
Understanding whether paradoxes represent permanent 
tensions or dialectical processes resolvable through or-
ganizational learning remains an open empirical ques-
tion with significant theoretical implications.

Cross-Level Analysis. Our framework primarily 
addresses organizational-level phenomena, yet AI inte-
gration creates multi-level dynamics spanning individ-

ual, team, organizational, and inter-organizational lev-
els [47; 48]. Individual employees experience the AI-en-
hanced work environments differently based on roles, 
expertise, and attitudes toward technology. Team-level 
dynamics shift as human-machine collaboration redis-
tributes cognitive labor. Inter-organizational networks 
transform as algorithmic systems coordinate supply 
chains and market interactions. Future research em-
ploying multilevel methodologies could unpack how 
the AI-enhanced resilience emerges from interactions 
across these levels, revealing micro-foundations and 
macro-consequences of algorithmic reflexivity.

Methodological Innovations for Studying 
Algorithmic Organizations. The opacity inherent 
in AI systems necessitates novel research method-
ologies [49]. Computational ethnography, integrating 
traditional ethnographic observation with analysis 
of digital traces, logs, and algorithmic outputs, offers 
promising approaches [50]. Researchers could track 
organizational decision-making through both human 
narratives and machine-generated data, triangulating 
between lived experience and computational real-
ity. Algorithmic auditing techniques, borrowed from 
computer science, could systematically probe AI sys-
tems to reveal their implicit decision rules and biases 
[51]. Such audits might uncover organizational behav-
ior patterns invisible to human observers yet conse-
quential for organizational outcomes.

Simulation-based research methods offers 
another frontier. Agent-based models incorporating 
both human and artificial agents could explore emer-
gent dynamics of hybrid intelligence under controlled 
conditions [52; 53]. These simulations might test theo-
retical propositions about algorithmic reflexivity and 
paradox navigation across parameter spaces too vast 
for field research. Digital twins of organizations –  
computational models continuously updated with 
real-time data – could enable quasi-experimental in-
vestigations of AI integration strategies [54]. However, 
simulation validity remains contested, requiring care-
ful calibration against empirical observations.

Mixed-methods approaches combining quali-
tative depth with quantitative breadth appear particu-
larly suitable for capturing multi-faceted phenomena 
of the AI-enhanced resilience [55]. Sequential designs 
might begin with exploratory case studies identifying 
relevant variables and relationships, followed by large-
sample surveys testing generalizability. Alternatively, 
quantitative patterns from archival data could guide 
purposive selection of cases for in-depth qualitative 
investigation. Integration of findings across methods 
could triangulate toward robust theoretical insights 
while acknowledging irreducible uncertainties in 
studying emergent, complex phenomena.



566

Е
К
О
Н
О
М
ІК

А
	

 М
ЕН

ЕД
Ж

М
ЕН

Т 
І М

АР
КЕ

ТИ
Н

Г

БІЗНЕСІНФОРМ № 10_2025
www.business-inform.net

As organizations evolve into hybrid human-
machine systems, management theory must evolve to 
understand them. The alternative is theoretical obso-
lescence in a world that has moved beyond our com-
prehension. Our framework represents one attempt to 
bridge the growing gap between organizational reality 
and theoretical understanding, offering conceptions 
and propositions that capture emerging phenomena 
while acknowledging profound uncertainties ahead. 
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